
An Alternating Optimization Approach based on
Hierarchical Adaptations of DBSCAN

Alexander Dockhorn, Christian Braune, and Rudolf Kruse
Institute of Knowledge and Language Engineering

Department for Computer Science, Otto von Guericke University Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

Email: {alexander.dockhorn, christian.braune, rudolf.kruse}@ovgu.de

Abstract—DBSCAN is one of the most common density-based
clustering algorithms. While multiple works tried to present
an appropriate estimate for needed parameters we propose
an alternating optimization algorithm, which finds a locally
optimal parameter combination. The algorithm is based on the
combination of two hierarchical versions of DBSCAN, which
can be generated by fixing one parameter and iterating through
possible values of the second parameter. Due to monotonicity of
the neighborhood sets and the core-condition, successive levels
of the hierarchy can efficiently be computed. An local optimal
parameter combination can be determined using internal cluster
validation measures. In this work we are comparing the measures
edge-correlation and silhouette coefficient. For the latter we
propose a density-based interpretation and show a respective
computational efficient estimate to detect non-convex clusters
produced by DBSCAN. Our results show, that the algorithm can
automatically detect a good DBSCAN clustering on a variety of
cluster scenarios.

I. INTRODUCTION

Clustering refers to the task of finding multiple sets of similar
objects. While the related analysis task classification is in need
of a class label for each instance, clustering algorithms find
groups of similar items based on a similarity measure. Density-
based clustering is a common type of clustering algorithms
in which areas of higher densities, which are separated by
low-density regions, are expected to form clusters. Instances
located in sparse areas and not being part of a cluster are
usually considered to be noise or outliers.

Prototype based algorithms such as c-means, fuzzy-c-means
or expectation-maximization [1] expect the data set to include
a given number of clusters c in which the instances have
to be categorized into. This process often minimizes the
pairwise dissimilarities between all objects in a cluster and
maximizes inter-cluster-dissimilarities, which results in clusters
of preferably convex shape.

In contrast density based methods such as DBSCAN [2] and
OPTICS [3] are not limited to convex cluster shapes. Dense
regions in any given shape can be detected as long as they fulfill
the given density threshold. An additional benefit is that no
estimation for the number of clusters has to be done. However,
if available, it can be used to adjust the density threshold.

While density based methods perform very good on high-
dimensional data sets [4], the estimation of a viable density
level can become a challenging issue. As far as possible,
multiple works have suggested estimates for appropriate

parameter settings [5], [6] or reduce the number of free
parameters (e.g. [7]).

This paper discusses the algorithm DBSCAN and a method
for automatically determining locally optimal parameter settings
given an internal cluster validation measure. Section II will give
a quick overview of the algorithm DBSCAN and highlight the
monotonicity of the eps-neighborhood and the core-condition
with respect to the parameters eps and minPts. In Section III
we propose two new algorithms based on these monotonicity
observations. Furthermore we will explain how they exploit
the monotonicity to create a hierarchy of clusterings by fixing
one parameter and determining the optimal value for the other
parameter. A local optimum of possible parameter combinations
can be found using an alternating optimization approach. In
addition, we compare available optimization criteria under the
perspective of possible cluster structures produced by DBSCAN.
Section IV contains multiple experiments on standard clustering
data sets. We give a detailed view on the behavior of alternating
optimization DBSCAN and compare the performance of
optimization criteria considered.

II. PRELIMINARIES

A. DBSCAN

In the year 1996, Ester et al. [2] proposed a density based
clustering algorithm called DBSCAN, in which continuous
regions of higher density are grouped in the same cluster.
Therefore two parameters need to be fixed, the radius of a
points neighborhood further referred to as eps and the minimal
number of points minPts for a region to be considered as
dense region.

Let a region with a radius of eps centered at a point p of
data set D be dense, if it contains at least minPts-points. For
each point an eps-neighborhood can be defined as follows:

Neps(p) = { q ∈ D
∣∣ dist(p, q) ≤ eps } (1)

The eps-neighborhood equals the set of points inside a
hypersphere with radius eps centered at p. A point is called
core-point if its eps-neighborhood contains at least minPts
points.

coreseps,minPts = { p ∈ D
∣∣minPts ≤ |Neps(p)| } (2)

For a given pair of (eps, minPts) a cluster is defined by
the properties density-reachability and density-connectedness.

Fig. 1: Comparison of DBSCAN results for different parameter settings. Noise points are marked with ’×’. row-wise: monotonic
behavior related to eps, column-wise: monotonic behavior related to minPts.

Definition 1 ((directly) density-reachable): A point q is
directly density-reachable from point p, if q ∈ Neps(p) and
p is a core-point. Note that the conditions p ∈ Neps(q) and
q ∈ Neps(p) are equivalent. Furthermore, two points p, q are
density-reachable if there exists a chain of points p1, . . . , pn
with p1 = p and pn = q such that for each 1 ≤ i < n, pi+1 is
directly density-reachable from pi.

Definition 2 (density-connected): Two points p, q are density
connected to each other if there exists a point o from which
both points are density-reachable.

A cluster Ci is a maximal set in which all points are density
connected to each other. The set of all clusters is denoted as
C = {C1, · · · , Ck}. Note that a point, that is not a core point,
can be part of more than one cluster, if it lies on directly on the
border between two clusters. Points not located in any cluster
can be considered noise.

For a given pair of eps and minPts, DBSCAN has an
average runtime of O(n · log n), in which all clusters matching
the density condition will be found.

B. Monotonicity of DBSCAN

Monotonicity is a frequently exploited property which
enables algorithms to iterate through possible parameter values
and adjust the current result to the new parameter. One typical
example is the a-priori property in frequent item set mining [8],
which states that the set of frequent item sets can not decrease if
the minimum support is reduced. We will use a similar strategy
by exploiting the monotonicity of the eps-neighborhood and
the core-condition.

For two radii eps1 > eps2 we can show:

|{ q ∈ D
∣∣ dist(p, q) ≤ eps1 }| ≥

|{ q ∈ D
∣∣ dist(p, q) ≤ eps2 }|

|Neps1(p)| ≥ |Neps2(p)| (3)

The possible increase of the eps-neighborhood also influences
the number of cores. For a fixed value of minPts we can
infer:∣∣{ p ∈ D ∣∣minPts ≤ |Neps1(p)| }

∣∣ ≥∣∣{ p ∈ D ∣∣minPts ≤ |Neps2(p)| }
∣∣

|coreseps1,minPts| ≥ |coreseps2,minPts| (4)

Since the size of the neighborhood sets can only increase, it
is possible that more points fulfill the core-condition. This can
either increase the cluster sizes or merge multiple clusters into
one, because additional points increase the density-reachability
and density-connectedness. Figure 1 shows a comparison of
multiple DBSCAN clusterings. Each row contains clusterings
initialized with the same minPts value, each column contains
clusterings initialized with the same eps value. Changes in
the clustering result can be attributed to a change of the
neighborhood sets.

A similar approach can be used regarding the value of
minPts. For two values minPts1 < minPts2 the following
inequality holds:

∣∣{ p ∈ D ∣∣minPts1 ≤ |Neps(p)| }
∣∣ ≥∣∣{ p ∈ D ∣∣minPts2 ≤ |Neps(p)| }

∣∣
|coreseps,minPts1 | ≥ |coreseps,minPts2 | (5)

The neighborhood of each point is unaffected by the
change of minPts. Note that a decrease of minPts cannot
decrease the size of the core-set. The columns of Figure 1
show DBSCAN clusterings for constant values of eps and
differing minPts. Our proposed algorithms will now utilize
the monotonicity observations for producing a hierarchy of
clusterings.

III. HIERARCHICAL DBSCAN

We created two hierarchical variants of the DBSCAN
algorithm based on the monotonicity criteria presented in
Equations 4 and 5. For each variant, one of the two parameters
has to be fixed in order to produce a hierarchy of clusterings
by iterating through possible values for the second parameter.
The following sections will take a closer look at both versions
of our hierarchical DBSCAN algorithms.

A. minPtsDBSCAN

Relating to the core condition it is straight-forward to
adjust the radius of a points neighborhood. For each point we
determine a core-distance by randomly setting the parameter
minPts ≤ |D| to a fixed value. Sorting the nodes by their core-
distance gives us levels of the desired hierarchy. Consecutive
levels include changes by either adding a new cluster, extending
an existing cluster or merging two clusters which are now
density-connected. Further hierarchy levels in between two
core distances di, dj might possibly exist, since new points
can get in range of an existing core with distance dk, where
di < dk < dj .

From this observation follows that all pairwise distances of
two points have to be processed to ensure that each different
DBSCAN level is included in the hierarchy. The process can
be stopped as soon as every point is a core-point and in the
same cluster. The minPtsDBSCAN algorithm is summarized
in the following pseudo-code:

Algorithm 1 minPtsDBSCAN

Input: min pts, dist mat = pairwise distance matrix of D

C ← {}
clust hierarchy ← initialize clustertree(C)
dist list ← sort dist mat in priority list as (r, c, d)

(row-index, column-index, distance)

for all (r, c, d) in dist list do
add c to neighborhood of r
if r 6∈ cores and min pts ≤ |N(r)| then

add r to cores
end if
update density reachability(r)
Cdist ← update clustering(C)
if Cdist 6= C then

clust hierarchy.add clustering(Cdist)
C ← Cdist

end if
end for

return clust hierarchy

For the algorithm minPtsDBSCAN we need to estimate
a value for the parameter minPts. Choosing a value of
minPts = 1 results in a hierarchical clustering with
single-linkage. Note that changing the value of minPts

also changes the set of hierarchy levels. The functions
update density reachability and update clustering can
efficiently be obtained by reusing the status of the last computed
distance.

B. epsDBSCAN
Our second algorithm is based on the stepwise decrease

of minPts while eps is constant. The monotonicity shown
in Equation 5 implies that while decreasing the minimum
number of points no cluster can decrease in size. Based on this
observation, we propose another variant of DBSCAN called
epsDBSCAN.

On initialization possible values for eps are in the range
of [min(dist mat), max(dist mat)]. Our algorithm starts
by setting minPts equal to the biggest neighborhood-set size
in the data set and decreasing it stepwise until every node
fulfills the core-condition. In comparison to minPtsDBSCAN
no further changes will be observed after each node became
a core, since the neighborhood set is not influenced by the
variable minPts. The set of hierarchy levels can be determined
by:

{ |Neps(p)|
∣∣ p ∈ D }

In minPtsDBSCAN the hierarchy levels were bound to pairwise
distances, which results in a real number value, whereas
epsDBSCAN is limited to natural numbers. The epsDBSCAN
algorithm is summarized in the following pseudo-code:

Algorithm 2 epsDBSCAN

Input: eps, dist mat = pairwise distance matrix of D

C ← {}
clust hierarchy ← initialize clustertree(C)
calculate neighborhood sets based on eps
minPts ← max(|Neps(p)|)

while |cores| ≤ |D| do
new core nodes = { p ∈ D

∣∣ |Neps(p)| = min pts }
add new core nodes to cores
update density reachability(new core nodes)
CminPts ← update clustering(C)
if CminPts 6= C then

clust hierarchy.add clustering(CminPts)
C ← CminPts

end if
min pts ← min pts− 1

end while

return clust hierarchy

For epsDBSCAN it occurs far more often that nodes
have to be added to the set of cores for the same value
pair (minPts, eps). Motivated by this observation, nodes are
grouped by their neighborhood size in advance. This ensures a
faster computation, since the methods for updating the density-
reachability and the clustering are only called once per group
of added cores.

C. Alternating Optimization
Both previous proposed algorithm can be combined to

an alternating optimization process to find a locally optimal
parameter combination. The produced cluster hierarchy given
a fixed parameter combination can be analyzed in order to find
an optimal value for the second parameter. This is done by
rating the clustering of each hierarchy level given an internal
cluster validation measure.

The alternating optimization process is summarized in the
following pseudo-code:

Algorithm 3 aoDBSCAN

Input: dist mat = pairwise distance matrix of D

min pts ← random() or set by user
repeat

clust hierarchy ← minPtsDBSCAN (min pts)
eps = get best eps(clust hierarchy)

clust hierarchy ← epsDBSCAN (eps)
minPts = get best minPts(clust hierarchy)

until convergence of min pts and eps

return min pts, eps

It is not necessary to start the process with minPtsDBSCAN.
In certain scenarios it can be beneficial to swap the order of
minPtsDBSCAN and epsDBSCAN. Since the initial estimation
influences the found local optima we recommend to use
either epsDBSCAN or minPtsDBSCAN, depending on which
parameter is easier to estimate. It proved beneficial to start with
minPtsDBSCAN, since in average the number of hierarchy
levels is smaller than for epsDBSCAN.

Given an optimization criterion we can rate each possible
cut-height and choose the best in regard to the rating. In the
following subsections we compare the measures silhouette
score [9] and edge correlation [10] as two such optimization
criteria.

1) (Density) Silhouette Coefficient: The silhouette coefficient
is based on the tightness of a cluster in comparison to its
separation to other clusters. A silhouette of point i is defined
as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(6)

where a(i) is the average distance to points in the same
cluster as point i and b(i) the minimum distance to points of
other clusters. The silhouette coefficient of a cluster is defined
as the arithmetic mean of all silhouettes of points in a cluster
Ci.

sCi =
1

nCi

∑
o∈Ci

s(o)

Accordingly the silhouette score is the mean of the silhouette
coefficients of each cluster.

sC =
1

nC

∑
Ci∈C

sCi
(7)

The inclusion of the average distance to each point in the
cluster makes the silhouette score favor convex clusters. This
is no problem for algorithms that tend to produce such shapes,
but heavily limits the area of application for the DBSCAN
algorithm. Therefore we propose a density-based interpretation
of the silhouette score, which changes the definition of a(i).

Let G = (V,E) be a graph, where V is the set of all nodes
of the cluster Ci. We start with E = ∅. For each pair of nodes
u, v ∈ V we can add an edge with weight dist(u, v). All
possible edges are sorted in ascending order by their edge
weight and added to the graph until each pair of nodes u, v is
connected by a path p(u, v) = u→ v. We define the cost of a
path cost(p) to be the largest edge weight on the path.

Let a(i) be:

a(i) =
1

nCi
− 1

∑
j∈Ci; i 6=j

arg min
p

(cost(p(i, j)))

Since this formula is too complex to evaluate for every
hierarchy level, we suggest to use the eps value, for which the
cluster Ci first emerged, as an upper-bound ā(i) ≥ a(i).

ā(i) = arg min
eps

(for Ci to exist)

Another problem that can emerge is the possible existence
of border points belonging to more than one cluster. If we
exclude all border points, the inequality b(i) > ā(i) holds for
any clustering produced by DBSCAN. Otherwise, there would
exist a point p not present in i ∈ Ci, for which the distance
dist(p, i) = b(i) ≤ eps. In this case point p would be in the
neighborhood of i and therefore the Cluster Ci would not be
maximal.

The evaluation section will show that these changes in the
calculation of sC adapt well to cluster structures produced by
DBSCAN. We will use the abbreviation sC for results based on
the original silhouette coefficient and sdC for the density based
interpretation of silhouette coefficient, where a(i) is replaced
by ā(i) and border points are excluded from the calculation.

2) Edge Correlation: Correlation clustering can be seen as
maximizing the correlation of the clustering C and a given sim-
ilarity measure. Based on an analysis of correlation clustering
for graphs in [10], we calculate the Pearson-correlation ρ of a
n× n cluster matrix LC and a similarity matrix S.

Where the matrix L is defined by:

LC(i, j) =

1 if i and j are in the same cluster

0 else

The entry (i, j) of LC is 1 if i and j are in the same cluster
referring to C, and they 0 if they are not.

We used 1 − dist(i, j) as a similarity measure to form
matrix S. Since we are only measuring the correlation between
the similarity matrix S and the cluster matrix there is no need
to use any special similarity measure. The only requirement is
that the mapping from distance to similarity measure is linear.
The edge correlation ρC of a clustering C can be calculated as
seen in:

ρC = ρ(LC , S)

TABLE I: Results for the Aggregation data set

measure eps minPts iterations homogeneity completeness v-measure

sC 1.423 5 2 0.80 0.99 0.89
sdC 1.451 1 4 0.80 1.0 0.89

ρC 3.482 11 4 0.78 1.0 0.84

TABLE II: Results for the Moons data set

measure eps minPts iterations homogeneity completeness v-measure

sC 0.224 5 2 1.0 0.52 0.68
sdC 0.324 3 3 1.0 1.0 1.0

ρC 0.210 1 4 1.0 0.40 0.57

TABLE III: Results for the Blobs-1000D data set

measure eps minPts iterations homogeneity completeness v-measure

sC 47.277 31 5 1.0 1.0 1.0
sdC 141.315 5 2 1.0 1.0 1.0

ρC 47.277 31 5 1.0 1.0 1.0

TABLE IV: Results for the Spirals data set

measure eps minPts iterations homogeneity completeness v-measure

sC 3.668 3 2 1.0 1.0 1.0
sdC 1.107 1 4 1.0 1.0 1.0

ρC 0.863 5 2 0.29 0.35 0.32

TABLE V: Results for the R15 data set

measure eps minPts iterations homogeneity completeness v-measure

sC 0.422 5 2 0.87 0.96 0.91
sdC 0.625 1 3 0.59 1.0 0.74

ρC 0.783 5 2 0.59 1.0 0.74

TABLE VI: Results for the D31 data set

measure eps minPts iterations homogeneity completeness v-measure

sC 1.025 10 5 0.82 0.92 0.87
sdC 2.225 1 3 0.04 0.97 0.08

ρC 1.163 2 3 0.53 0.98 0.69

TABLE VII: Results for the Flame data set

measure eps minPts iterations homogeneity completeness v-measure

sC 2.661 48 3 0.80 0.48 0.60
sdC 1.254 1 4 0.01 0.18 0.02

ρC 0.992 6 3 0.93 0.79 0.86

IV. EVALUATION

We evaluated our proposed algorithm aoDBSCAN on a
variety of data sets. The alternating optimization process was
initialized using the optimization criteria silhouette coefficient
sC , density based silhouette coefficient sdC and edge correla-
tion ρC . Each run started with an initial value of minPts = 5.
This should be seen as a trade-off between single linkage
behavior (minPts = 1) and focusing on areas of high density
(minPts >> 1). Note that other local optima could be found
using a different initial value for minPts or starting with
epsDBSCAN.

We used the external validation measures homogeneity,
completeness and v-measure [11] to validate the clustering
results. Homogeneity is highest if only data points of a
single class were assigned to a single cluster. Symmetrically,
completeness will be maximal if all data points of a single
class were assigned to a single cluster. The weighted harmonic
mean of homogeneity and completeness is called v-measure.
Tables I to VII summarize the optimization process per opti-
mization criterion.

The Aggregation data set contains clusters of various shape,
where two groups, each containing two clusters, are connected
by a bridge of lower density. All optimization criteria could
adapt to the various cluster shapes, while silhouette coefficient
and edge correlation reported few noise points and scored not
as high as density based silhouette coefficient. However none of
the optimization measures led to a separation of the connected
clusters.

Data sets including non-convex clusters such as Moons
and Spirals were best clustered using density based silhouette
coefficient. Edge correlation performed worst on both scenarios,
due to the high distances of points in the same cluster.

The performance on convex clusters was tested on the
data sets Blobs-1000D, R15 and D31. While the first data
set included 3 spherical clusters of 100 points each in 1000
dimensions per cluster, clusters in the data sets R15 and D31
consisted of less points with only 2 dimensions. The silhouette
coefficient performed best in detecting these clusters. No effects
of higher dimensionality were observed.

The data set Flame is made of a Gaussian distributed convex
cluster and a cluster following a curved line around the first
cluster. Both clusters are connected by a lower density area.
Edge correlation was the only optimization criterion, which
detected a nearly optimal clustering. The silhouette coefficient
and its variant were unable to separate both areas at the lower
density region.

V. CONCLUSIONS

In this paper we proposed two algorithms minPtsDBSCAN
and epsDBSCAN, which are hierarchical versions of the
widely known DBSCAN algorithm. By exploiting observed
monotonies the algorithms can be efficiently implemented via
actualizing previous clustering results.

Furthermore, the two algorithms can be used in an alternating
optimization to find a local optimal parameter combination
for DBSCAN. As a drawback an internal cluster validation

Fig. 2: Best clustering results for aoDBSCAN and an initial
value of minPts = 5. The clustering of the first four data sets
(Aggregation, Moons, Blobs-1000D and Spirals) result from an
optimization using density based silhouette coefficient. Results
for R15 and D31 were created using silhouette coefficient. The
Flame data set was clustered using edge correlation.

measure has to be fixed as the optimization criterion. In our
work we compared the use of silhouette coefficient and edge
correlation as two such measures. However, both measures
prefer convex shaped clusters and cannot adapt to all cluster
shapes produced by DBSCAN. For this reason we proposed a
density based interpretation of the silhouette coefficient, which
rates the density of a cluster as the minimal eps-value it would
be created with and sets it in relation to the minimal distance to
the next cluster. In contrast to the original silhouette coefficient
this optimization criterion can adapt to clusters of arbitrary
shape. Fixing either minPts or eps and rating the levels of
the hierarchy results in the best value for the second parameter.
The result can further be used as initialization for the next step
of the alternating optimization process.

Our experiments showed that this method is capable of
finding viable parameter combinations in a variety of cluster
settings. The comparison of internal validation measures
revealed that the density based silhouette coefficient performed
best in most experiments. However in the search for convex
shaped clusters, silhouette coefficient and edge correlation

performed better than the proposed density based silhouette
coefficient.

Future work will focus on the analysis of the produced
hierarchy. We expect other methods from hierarchical clustering
to adapt well to our hierarchical DBSCAN variants. Iterating
overt all possible eps values, i.e. every entry in the distance
matrix can be cumbersome and slow down the optimization
process. We expect that an initial binning of the distances will
not deteriorate the results but speed up the process significantly.
In our experiments, the density-based silhouette coefficient has
shown to be very effective in finding non-convex but well
separated clusters. A more detailed, theoretical analysis of this
measure would be desirable.

REFERENCES

[1] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes, M. Steinbrecher, and
P. Held, Computational Intelligence: A Methodological Introduction, ser.
Texts in Computer Science. New York: Springer, 2013.

[2] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” Second International Conference on Knowledge Discovery and
Data Mining, pp. 226–231, 1996.

[3] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering Points To Identify the Clustering Structure,” ACM SIGMOD
Record, vol. 28, no. 2, pp. 49–60, 1999.

[4] R. Winkler, “Prototype Based Clustering in High-Dimensional Feature
Spaces,” Ph.D. dissertation, Otto von Guericke University Magdeburg,
2015.

[5] J. Esmaelnejad, J. Habibi, and S. Yeganeh, “A Novel Method to Find
Appropriate µ for DBSCAN,” in Intelligent Information and Database
Systems, ser. Lecture Notes in Computer Science, N. Nguyen, M. Le,
and J. witek, Eds. Springer Berlin Heidelberg, 2010, vol. 5990, pp.
93–102.

[6] S. Vijayalaksmi, “A Fast Approach to Clustering Datasets using DBSCAN
and Pruning Algorithms,” International Journal of Computer Applications,
vol. 60, no. 14, pp. 1–7, 2012.

[7] C. Braune, S. Besecke, and R. Kruse, “Density based clustering: Alter-
natives to DBSCAN,” in Partitional Clustering Algorithms. Springer,
2015, pp. 193–213.

[8] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB ’94), pp. 487–499, 1994.

[9] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[10] N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Machine
Learning, vol. 56, no. 1-3, pp. 89–113, 2004.

[11] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” Computational Linguistics,
vol. 1, no. June, pp. 410–420, 2007.

